
LA-UR-19-29588
Approved for public release; distribution is unlimited.

Title: MPI Sessions: Second Demonstration and Evaluation of MPI Sessions
Prototype

Author(s): Pritchard, Howard Porter Jr.
Gutierrez, Samuel Keith
Hjelm, Nathan
Holmes, Daniel
Castain, Ralph

Intended for: Report

Issued: 2019-09-24

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

 STPM13/OMPIX/13-35

MPI Sessions:
Second Demonstration and Evaluation of MPI Sessions Prototype

Version 1.0

September, 2019
LA-UR-19-XXYYY

Samuel Gutierrez, Howard Pritchard – LANL
Nathan Hjelm - Google
Daniel Holmes, EPCC
Ralph Castain, Intel

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of
Energy (DOE) Information Bridge.

 Web site http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source.

 National Technical Information Service
 5285 Port Royal Road
 Springfield, VA 22161
 Telephone 703-605-6000 (1-800-553-6847)
 TDD 703-487-4639
 Fax 703-605-6900
 E-mail info@ntis.gov
 Web site http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
(ETDE) representatives, and International Nuclear Information System (INIS) representatives from
the following source.

 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 Telephone 865-576-8401
 Fax 865-576-5728
 E-mail reports@osti.gov
 Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal
liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed
herein do not necessarily state or reflect those of the United States
Government or any agency thereof.

iii

CONTENTS

Page

CONTENTS .. iii

ABSTRACT ... 4

1. BACKGROUND ... 4
1.1 introduction ... 4
1.2 intended audience ... 5

2. MPI Sessions API ... 5
2.1 Overview ... 5
2.2 Process Sets ... 6
2.3 Session Creation/Destruction Functions ... 7
2.4 Runtime Query Functions ... 7
2.5 Group and Communicator Management Functions .. 9

3. Session prototype Implementation .. 10
3.1 Prototype Description .. 10

3.1.1 Communicator Identifiers in the baseline Open MPI ... 10
3.1.2 Algorithmic changes to CID generation to support Sessions ... 11
3.1.3 PML Modifications ... 12
3.1.4 Restructuring to Support Dynamic Initialization .. 13
3.1.5 Implementation of MPI Sessions Interfaces .. 14

3.2 Follow-on work on the Prototype ... 14
3.3 Reference Implementation Source and Tests ... 15

4. Evaluation of Prototype ... 15
4.1 Update on performance benchmark results ... 15
4.2 Evaluation of MPI Sessions USING DASK .. 16

4.2.1 DASK overview ... 17
4.2.2 Challenges Using DASK with the Sessions Prototype ... 18

5. Conclusions .. 18

6. Works Cited ... 18

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

4

ABSTRACT

MPI Sessions presents a new paradigm for applications to
use MPI functionality within an application. This paradigm
offers the promise of more flexible ways for applications to
express the capabilities they require from MPI at a fine grain
level. This report presents a second evaluation of a prototype
implementation of the MPI Sessions proposal, including
additional development work on the prototype and
investigations using Sessions in the DASK data analytics
framework.

1. BACKGROUND

1.1 INTRODUCTION

MPI Sessions addresses a number of the limitations of the current MPI programming model.
Among the immediate problems MPI Sessions is intended to address are the following: MPI
cannot be initialized within an MPI process from different application components without a
priori knowledge or coordination, MPI cannot be initialized more than once, and MPI cannot
be reinitialized after MPI finalize has been called. With MPI Sessions, an application no
longer needs to explicitly call MPI_Init to make use of MPI, but rather can use a Session to
only initialize MPI resources for specific communication needs. Unless the MPI process
explicitly calls MPI_Init, there is also no explicit MPI_COMM_WORLD communicator.
Sessions can be created and destroyed multiple times in an MPI process.

MPI Sessions provides a compartmentalization mechanism, which can be used as a basis
both for optimization of MPI behavior for separate components of an application, as well as
for supporting run-through-stabilization style MPI fault tolerance schemes. The ability to
initialize and finalize MPI multiple times within an MPI process can also assist in the
development of fallback-style fault tolerance schemes as well.

The MPI Sessions model is backward compatible, so applications do not need to be
extensively modified to start making use of it. In multi-component applications, for example,
a component such as a library can make use of MPI Sessions without impacting the rest of
the application.

A prototype of the MPI Sessions proposal has been developed based on Open MPI (Hjelm, et
al., 2019). A description of the prototype and associated enhancements to the Process
Management Interface for Exa-scale (PMIx) was described in a previous ECP report -
STPM13-34. An initial evaluation of the prototype was also presented in a previous ECP
report – STPM13-36. It turns out there were some mistakes in the data presented in that
report. The corrected results are presented in this report. There were also some inaccuracies
in the report for the story STPM13-34 concerning the tag matching algorithm. A corrected

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

5

description of the algorithm is also presented in this report.

In addition to corrections to data and algorithm descriptions, this report includes a description
of the current Sessions Proposal before the forum, which differs in some aspects from the
Proposal described in the ECP report for STPM13-4, additional work on the prototype
undertaken since completion of STPM13-36, and results of investigations into the usability
of Sessions with a variant of the DASK data analytics framework.

The rest of this report is organized as follows: a review of important elements of the current
MPI Sessions proposal, a brief review of the prototype implementation focusing on
corrections to the description in the report for STPM13-36 and additional work on the
prototype since that report, corrected performance results, and an evaluation of the use of the
prototype within DASK.

1.2 INTENDED AUDIENCE

This report is written for knowledgeable software professionals and designers. Thus, the
Client will not be within the intended audience for this document, which is: (a) Project Team;
(b) Project Lead; (c) ECP Auditors and Reviewers.

2. MPI SESSIONS API

2.1 OVERVIEW

In this section, a summary of the MPI Sessions API extensions to the MPI standard is
presented.

More detailed descriptions of the MPI Sessions proposed MPI API extensions were given in
ECP milestone reports STPM13-4, STPM13-34, and a EuroMPI ’16 paper (Holmes, 2016).
These proposed extensions to the MPI standard are a product of several years of work by the
MPI Forum’s Sessions Working Group. A formal reading of the MPI Sessions proposal was
made at the MPI Forum March 2019. Useful feedback was obtained and will be incorporated
into the proposal. A second formal reading is scheduled for the May 2019 meeting.

In the Sessions Proposal and within this report we refer to two different MPI process models.
The World Model refers to the existing model for initializing and finalizing MPI. In this
model, the MPI_COMM_WORLD communicator is valid to use once MPI is initialized.
Once MPI is finalized, MPI can no longer be used by the application. The Sessions Model
refers to the new Sessions-based model for using MPI. A process allocates one or more MPI
Sessions in order to use MPI methods. Sessions can be initialized and finalized multiple
times within an application.

Note in previous reports and earlier versions of the MPI Sessions proposal, the World Model
was termed the World Process Model, and the Sessions Model was termed the Peer to Peer
Process Model.

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

6

As stated previously, Sessions are intended as an alternate means for an application, or
component of an application, to acquire MPI resources in order to make subsequent use of
MPI functionality. The general usage model for an MPI Session is illustrated in Figure
1Error! Reference source not found..

Figure 1. Steps to creating an MPI Communicator from a Session Handle

2.2 PROCESS SETS

A key element of the MPI Sessions proposal is Process Sets. These are the mechanism for
MPI applications to query the runtime. Each process set has a unique set name. In the
current scheme, set names have a URI format. Two process sets are mandated:

mpi://WORLD
mpi://SELF

Many additional process sets may be defined by the runtime, e.g.

mpi://MPI_COMM_TYPE_SHARED
mpi://UNIVERSE
location://rack/19
network://leaf-switch/37
arch://x86_64

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

7

application://redis-server/5

Mechanisms for defining process sets, and how system resources are assigned to these sets is
currently assumed to be runtime implementation dependent. The prototype implementation,
for example, includes an mpi://shared process set describing the MPI processes in a job that
are local to the same node in a cluster. It was further modified to support an additional
process set to use with DASK (see Section 4.2).

A process set caches key/value tuples which an application can access using
MPI_Session_get_pset_info, and subsequent queries of the returned info object using existing
MPI info object methods. A process may query for more information about process sets,
e.g. the number of processes in the set, etc. using this method. The size key is mandatory for
all process sets.

2.3 SESSION CREATION/DESTRUCTION FUNCTIONS

MPI_Session_init(MPI_Info info, MPI_Errhandler errhandler, MPI_Session *session)
 IN info info object to specify thread level support, MPI implementation
 Specific resources, etc.
 IN errhandler specifies an error handler to invoke in the event that Session
 initialization in the event that an error is encountered during
 Session instantiation.
 OUT session handle to the created session.

 The info argument can be used for specifying the level of thread safety required for the
Session, and possibly other MPI implementation specific resource and functionality
requirements. The errhandler argument specifies an error handler to associate with the
Session. Session initialization is intended to be a local, lightweight operation. A single
process may initialize multiple Sessions. MPI_Session_init is always thread safe; multiple
threads within an application may invoke it concurrently.

MPI_Session_finalize(MPI_Session *session)
 IN session handle to previously created session

This function is the Session equivalent of MPI_Finalize. It can block waiting for destruction
of objects derived from the Session handle. Every initialized Session must be finalized using
MPI_session_finalize.

2.4 RUNTIME QUERY FUNCTIONS

MPI_Session_get_num_psets(MPI_Session session,
 int *npset_names)

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

8

 IN session handled to previously created session.
 OUT npset_names number of available process sets

This function is used to query the runtime for the number of available process sets in
which the calling MPI process is a member. The number of available process sets returned by
this function may increase with subsequent calls to MPI_Session_get_num_psets.

MPI_Session_get_nth_psetlen(MPI_Session session,
 int n,
 int *pset_len)
 IN session handled to previously created session.
 IN n process set name number (integer)
 OUT pset_len length of the nth process set name

This function retrieves the length of the name of the nth process set name. Valid values
for n range from 0 to one minus the number of available process sets for this Session. The
number of available process sets for this session can be determined by calling
MPI_Session_get_num_psets. The length returned in C includes space for the end-of-string
character.

MPI_Session_get_nth_pset(MPI_Session session,
 int n,
 int pset_len,
 char *pset_name)
 IN session handled to previously created session.
 IN n process set name number (integer)
 IN pset_len length of the pset_name argument
 OUT pset_name pset_name (string)

This function returns the name of the nth process set in the supplied pset_name buffer.
pset_len is the number of characters available in pset_name. If it is less than the actual size
of the process set name, the value returned in pset_name is truncated. In C, pset_len should
be one less than the amount of allocated space to allow for the null terminator.

MPI_Session_get_info(MPI_Session session,
 MPI_Info *info)
 IN session handled to previously created session.
 OUT info info object containing information about the given process set.

MPI_Session_get_info returns a new info object containing the hints of the MPI
Session associated with session. The current setting of all hints related to this MPI Session
is returned in info. An MPI implementation is required to return all hints that are
supported by the implementation and have default values specified; any user-supplied hints
that were not ignored by the implementation; and any additional hints that were set by

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

9

the implementation. If no such hints exist, a handle to a newly created info object is
returned that contains no key/value pair. The user is responsible for freeing info via
MPI_INFO_FREE.

MPI_Session_get_pset_info(MPI_Session session,
 const char *set_name,
 MPI_Info *info)
 IN session handled to previously created session.
 IN set_name name of process set to query
 OUT info info object containing information about the given process set.

This function is used to query properties of a specific process set. The returned info
object can in turn be queried with existing MPI info object query functions. One key/value
pair must be defined, size. The value of the size key specifies the number of MPI processes
in the process set. The user is responsible for freeing the returned MPI_Info object.

2.5 GROUP AND COMMUNICATOR MANAGEMENT FUNCTIONS

MPI_Group_create_from_session_pset(MPI_Session session,
 const char *set_name,
 MPI_Group *group)
 IN session handled to previously created session.
 IN set_name name of process set from which to create an MPI Group
 OUT group MPI_Group handle

The function MPI_Group_Create_from_session_pset creates a group newgroup using the
provided session handle and process set. The process set name must be one returned from
an invocation of MPI_SESSION_GET_PSET_NAME using the supplied session handle. If
the pset_name does not exist, MPI_GROUP_NULL will be returned in the newgroup
argument. As with other group constructors, MPI_Group_Create_from_session_pset is a
local function.

MPI_Comm_create_from_group(MPI_Group group,
 const char *stringtag,
 MPI_Info info,
 MPI_Errhandler errhandler,
 MPI_Comm *newcomm)
 IN group MPI group handle
 IN stringtag character string which uniquely defines invocation of this
 communicator constructor using the supplied group
 IN info info object
 IN errhandler error handler to be attached to new intra-communicator
 OUT comm new communicator (handle)

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

10

This function is used to create a MPI communicator from a MPI group. The stringtag
argument allows the MPI implementation to discriminate between potentially concurrent
calls by the application to create multiple MPI communicators using the same supplied
group.

3. SESSION PROTOTYPE IMPLEMENTATION

3.1 PROTOTYPE DESCRIPTION
A detailed description of a MPI Sessions prototype was presented in ECP Milestone report
STPM 13-34 and in (Hjelm, et al., 2019). This section provides a brief description of the
prototype to provide context for later sections of the report and to clarify some elements of
the prototype originally described in STPM 13-34.

The MPI Sessions prototype is based off of the master branch of Open MPI from the
Project’s GitHub repo. The prototype also relies on recent additions to PMIx (Castain,
2018). The prototype is available on a fork of the Open MPI project.

In implementing the prototype, it turned out that it was easier to implement the Sessions
extensions to the standard in their entirety rather than implementing only a subset of the
features identified in the previous STPM13/OMPIX/13-4 report to support QUO.

The prototype involved five major groups of modifications and additions to Open MPI:

• development	and	implementation	of	Open	MPI’s	communicator	identifier	(CID)	
generator	to	support	creation	of	MPI	communicators	not	derived	from	
MPI_COMM_WORLD,	

• update	of	point-to-point	support	(PML	components)	to	accommodate	changes	to	
the	CID	generator,	

• restructuring	required	to	support	invocation	of	MPI	info,	error	handling,	and	
Sessions	attribute	functions	prior	to	invocation	of	MPI_Session_init,		

• restructuring	of	MPI	resource	teardown	to	support	Sessions	ability	to	be	
initialized	and	finalized	multiple	times	within	a	single	application	execution	
instance,		

• implementation	of	the	Sessions	API	extensions	interfaces,	
• and	additions	to	the	PMIx	component	of	Open	MPI’s	internal	PMIx	framework	to	

allow	for	the	use	of	new	PMIx	group	methods.	

Only the first three groups of modifications are discussed in this report, as the other major
modifications are covered adequately in the ECP report for STPM 13-34.

3.1.1 Communicator Identifiers in the baseline Open MPI

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

11

The CID implementation for communicators in Open MPI uses a 16-bit integer representing
the index into a local array of communicator objects. This representation was chosen to allow
for fast and efficient (i.e., constant time, constant space) lookup of a communicator. The CID
is used by the point-to-point messaging implementations (known as PMLs) in different ways
depending on the underlying communication library. For the Sessions prototype, we focused
on the most general-use PML component: ob1. This component sends the CID as a part of a
14-byte matching header attached to the user data. This header is used by the receiving
process to match the incoming message with the correct communicator and receive request.
The header was designed to be as compact as possible to limit the overhead of messaging.

The CID representation chosen by Open MPI requires the CID to be consistent across every
MPI process that participates in a communicator. To guarantee this property, Open MPI
currently uses a consensus algorithm (Gabriel & al, 2004). This algorithm performs a series
of reduction operations on the user-supplied parent communicator. First, each MPI process
attempts to store the new communicator at the lowest available local array index. An all-
reduce is then performed to find the largest index across the group of participating MPI
processes. If every participating process agrees on the same index, the algorithm terminates.
If not, then the algorithm continues with the largest index determined in the previous round.
Generally, the algorithm will finish after a small number of rounds but may end up searching
the entire CID space if it becomes heavily fragmented.

As the above algorithm requires a parent communicator, it could not be used as-is to support
the communicator constructors needed by the Sessions prototype.

3.1.2 Algorithmic changes to CID generation to support Sessions

One of the most significant challenges in implementing the Sessions prototype was
developing a fast method for generating a unique CID for each communicator created. Two
primary factors motivated the development of a new CID generation algorithm:

• the	lack	of	a	parent	communicator	(for	example,	MPI_COMM_WORLD)	to	use	for	
new	CID	generation;	

• the	use	of	the	PMIx	group	APIs	provides	a	robust	(but	potentially	slow)	way	to	
create	a	unique	64-bit	ID	within	an	allocation	

The Sessions proposal provides two new communicator constructor functions –
MPI_Comm_create_from_group and MPI_Intercomm_create_from_groups. These functions
provide an MPI group and a string tag instead of a parent communicator. No communicator
is provided because no predefined communicator exists in the Sessions Model. For the
prototype implementation, we chose to support these constructor functions by using the
runtime group constructor support provide by PMIx, see (Castain, 2018).

One of the biggest challenges in implementing the prototype was developing a method for
generating unique Communicator Identifiers (CIDs) when a communicator is created. Since
the Sessions Model does not have the concept of a base MPI_COMM_WORLD, and hence
of an implied base CID, a new method for generating CIDs is required.

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

12

The PMIx group constructor returns a 64-bit PMIx Group Context Identifier (PGCID) that is
guaranteed to be unique for the duration of an allocation (in the case of a batch managed
environment). This PGCID could be used as a direct replacement for the existing CID.
However, there are two major problems with taking this approach. First, if the prototype
were to use this PGCID directly as the communicator CID, the associated field in the match
header of ob1 would have to be expanded by at least 48 bits. This would require a reworking
of the existing, optimized tag matching support, and likely lead to degradation in
performance for shorter MPI messages. Second, acquiring the PGCID is a relatively
expensive operation as it involves inter-node messaging between PMIx servers to generate
the PGCID. Performance of existing MPI communicator constructors would be significantly
degraded were the PGCID to be adopted as a direct replacement for the existing CID.

The prototype addresses both of these issues by introducing the concept of a 128-bit exCID
and removing the constraint that a communicator’s CID (array index) be consistent between
all MPI processes in a communicator. The original CID is left intact so the optimized
matching support in ob1 (and other PMLs) can be left intact.

Similar to the old CID, the exCID of a communicator is consistent between all MPI processes
that participate in the communicator. We guarantee this property by careful construction of
the exCID. The exCID is divided into two 64-bit fields. The first field contains the PGCID
returned from PMIx when constructing a PMIx group. Since the PGCID is guaranteed to be
non-zero, this field is set to 0 for the built-in World Process communicators. The second field
is divided into eight 8-bit subfields. The subfields are used to generate exCID for derived
communicators. The exCID structure also contains a field to keep track of the currently
active subfield. When allocating an exCID from a new PGCID, this field is initialized to 7.
When creating a derived communicator, for example, by calling MPI_Comm_dup, the value
in the active subfield of the parent communicator is incremented and assigned to the new
communicator. This can be done 28 times before a new PGCID is needed. The active subfield
field exCID of the derived communicator is decremented to ensure that there are no exCID
collisions. If the active subfield of the parent communicator is 0, or the active subfield value
is 255, or not all processes are participating in the communicator creation
(MPI_Comm_create_group), then a new PGCID is acquired and assigned to the new
communicator.

For applications exclusively using the World Model, the prototype can use either the new
exCID generator or the original consensus algorithm. The exCID generator is used
exclusively when using a version of PMIx that supports group creation and the ob1 PML is in
use. In all other cases, the prototype falls back to the original consensus algorithm.

3.1.3 PML Modifications

Changing the way communicator CIDs are generated required changes to the way the PML
components use the CID. For the prototype, the ob1 PML was modified to support exCID. If
a communicator has an exCID when sending the first message to a peer MPI process, an
additional message header is generated and prepended to the existing match header. This

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

13

header includes both the exCID and the sender's local CID for the communicator. Upon
receipt of the first message, the receiver matches the exCID against the exCID of locally
known communicators. The sending processes' CID is stored locally and the tag match field
is updated to include the receiving processes' local CID for the communicator. The match is
then processed normally. A response message is generated and sent back to the sender
indicating the receiver's local CID for the communicator. This value is stored in existing
space available in a per-process structure associated with each MPI communicator. For
subsequent messages, the stored local CID for the remote process is used, and the standard
optimized tag matching mechanism is employed.

The ob1 PML was chosen because matching is handled entirely within Open MPI. This is not
the case for all the available PML components. In the future, we intend to implement support
for exCID for all available PML components.

3.1.4 Restructuring to Support Dynamic Initialization

The MPI Sessions proposal allows for the creation of multiple MPI Sessions throughout the
lifetime of the MPI application. In addition, it also allows additional MPI functions to be
invoked before a call to one of the initialization functions: MPI_Init,
MPI_Init_thread, or MPI_Session_init. In particular, before initialization, the proposal
allows for:

• calls	related	to	MPI_Info	objects	including	object	creation,	duplication,	
destruction,	and	the	insertion	and	deletion	of	key/value	pairs	from	an	MPI	info	
object,	

• calls	to	create/destroy	MPI_Errhandler	objects,	and	
• calls	related	to	session	attributes	creation,	destruction,	and	value	caching	

functions.	

These functions must, additionally, all be thread safe as they may be called before the thread
safety level is set. To support thread safety, the locks associated with MPI Info object
management, error handlers, and attributes are always enabled. None of these code paths are
on the critical path for MPI communication operations.

To support the additional functionality needed before initialization, the prototype modifies
Open MPI to use a different approach to initializing and cleaning up different MPI
subsystems. Instead of initializing the entire MPI library on initialization, as is done to
support the World Model, and relying on a carefully ordered series of cleanup calls to various
MPI subsystems as part of MPI_Finalize, the prototype leverages a new cleanup callback
framework provided by an Open MPI Open Platform Abstraction
Layer (OPAL). As the application creates MPI objects, the subsystems needed for those
objects are either initialized if not previously initialized, or an internal reference count is
incremented for previously initialized subsystems. When a new subsystem is initialized, it
adds its cleanup callback to the framework. As calls to MPI_Session_finalize destroy MPI
Sessions, these reference counts are decremented. When the last MPI Session has been
finalized, the cleanup callbacks are invoked, and MPI-internal resources are released. The

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

14

cycle begins again if the application creates a new MPI Session.

The legacy MPI-3 initialization and finalize functions MPI_Init, MPI_Init_thread, and
MPI_Finalize were restructured to create and finalize an internal MPI Session that also
initializes the World Model built-in MPI objects. This removes the need for any duplicate
code and allows the prototype to support the use of the new Sessions Model alongside the
World Model.

3.1.5 Implementation of MPI Sessions Interfaces

The prototype implements the complete set of C interfaces that are defined in the Sessions
proposal. This includes the functions to create/finalize sessions, get info on process sets,
create groups from process sets, and create MPI objects (communicators, windows, and
files) from groups.

The implementation of the MPI_Session_init function is required to be local-only. In the
prototype, we initialize only the minimum set of MPI subsystems needed to support the MPI
Session object. This includes initializing Open MPI’s Multicomponent Architecture (MCA)
support framework, info subsystem, point-to-point support, etc. The implementation of
MPI_Session_finalize releases all resources associated with the Sessions object and tears
down any resources not still in use by another MPI object.

The Sessions proposal introduces the concept of an MPI process set. Process sets differ from
MPI Groups in that they are simply names for lists of MPI processes. These names are either
predefined (e.g., mpi://world, mpi://self) or implementation-defined. The prototype
implementation defines three default process sets: mpi://world, which corresponds to the
process set in the World Model communicator MPI_COMM_WORLD; mpi://self
(MPI_COMM_SELF); an mpi://shared, which is defined as the set of processes on the local
node. Additional process sets are supported and must be provided by PMIx. When a process
set is used to create an MPI Group, the prototype queries the underlying PMIx
implementation to discover the associated MPI processes.

No changes were made to how Open MPI supports or represents MPI Groups. When
requesting an MPI Group for mpi://world, the returned MPI Group is equivalent to calling
MPI_Comm_group on MPI_COMM_WORLD.

Support for creating MPI objects from MPI Groups is handled using the exCID generation
algorithm. In the case of MPI Communicators, the exCID is used as the communicator
identifier. In all other cases, the prototype first creates an intermediate communicator, then
calls the MPI-3 object creation function with a parent communicator, and finally the
intermediate communicator is freed. This was done to speed up the development of the
prototype. We are actively looking at supporting MPI Window creation without the need for
an intermediate communicator.

3.2 FOLLOW-ON WORK ON THE PROTOTYPE

In the course of investigating the use of a DOE NNSA application with Sessions (described

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

15

in the report for STPM13-34), some issues were found in the prototype. The mapping of
Communicator handles between C and Fortran was not implemented correctly in the
prototype and had to be fixed to get the mixed C/Fortran application to work.

 In addition, some issues were found with resource teardown in the implementation of
MPI_Session_finalize. This problem actually uncovered a potential issue for implementing
this function over certain types of interconnects. Since a session can, in principle, span only
a subset of the entire MPI processes in the job, the usual solution of having a global barrier as
part of the MPI finalization procedure does not work. The shutdown methods(s) for the
communication mechanisms being used for message exchange between the MPI processes
participating in the Session should ideally handle the notion of an internal connection
shutdown. This was not the case for the OB1 Vader byte transport layer (BTL), so it needed
to be modified slightly in order to properly handle the Session finalize method. This issue
may need to be addressed by more sophisticated algorithms for a production implementation
of Sessions.

The Fortran bindings (F77, F90, and F08) for the Sessions extensions to the MPI API were
also added to the prototype since the STPM 13-36 story.

3.3 REFERENCE IMPLEMENTATION SOURCE AND TESTS

The prototype is available for download at https://github.com/hpc/ompi/tree/sessions_new.
The code examples from the Sessions Proposals plus a more extensive test case are available
at https://github.com/hppritcha/mpi_sessions_tests. Instructions on how to build and run the
test cases are included in the repo’s README. Note the special instructions for running the
tests on Cray XC systems.

4. EVALUATION OF PROTOTYPE

4.1 UPDATE ON PERFORMANCE BENCHMARK RESULTS

In the previous STPM13-36 report, differences in the OSU MBW MR message rate results
were observed when using World Model verses the Sessions Model for creating
communicators to be used for message exchange. At the time of that writing, the difference
in performance was attributed to the use of the exCID tag matching method rather than the
optimized CID for some of the messages. Subsequent analysis revealed however that the
performance difference could be attributed to the fact that for the Sessions Model, the MPI
OB1 layer was being initialized to support MPI_THREAD_MULTIPLE rather than
MPI_THREAD_SINGLE.

Figure 2 compares the latency for short messages using the osu_latency benchmark. With
the correction for Sessions initialization, the difference in short message latency performance
is virtually identical whether using the World or Sessions model. Similarly, Figure 3 shows
the results of the osu_mbw_mr message rate test using two MPI processes. As with the
latency measurements, the difference in message rate performance between the World and
Sessions initialization approaches is minimal.

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

16

Figure 2. Comparison of MPI Latency using MPI_Init and MPI_Session_init.

Figure 3. Comparison of MPI message rate using MPI_Init and MPI_Session_init.

4.2 EVALUATION OF MPI SESSIONS USING DASK

In the previous report, the Sessions prototype was evaluated for use in a fairly typical bulk-
synchronous MPI application. The use of OpenMP in portions of this multi-physics
application, and the different thread support levels required by the different modules of the
application made it of interest for testing the Sessions prototype. Some modification of the
application was required to use Sessions. Except for some bugs revealed testing the
application with the prototype, no changes to the prototype were required.

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

17

For a second application to evaluate using the Sessions prototype, an application or
framework less typical of HPC applications was desired. One of the goals of the original
Sessions proposal was to expand the range of applicability of the MPI program model.
Looking beyond the typical HPC application space would be more likely to reveal possible
shortcomings in the Sessions proposal, as well as limitations owing to the way the Sessions
prototype was implemented.

4.2.1 DASK overview

DASK is a task-based Python parallelization framework. The framework supports a
scheduler API which an application writer can use to distribute tasks (typically Python
functions) across a set of worker processes. DASK provides mechanisms for expressing task
dependencies, allowing one to parallelize a general DAG workflow.

There a number of DASK projects for managing the backing framework. In this
investigation, we focused on an MPI based version of DASK – DASK MPI as a starting
point. This version of DASK uses MPI purely for launching the DASK daemons – the
scheduler, the daemon to handle client applications, and the worker daemons. It uses mpi4py
to initialize and finalize MPI. The DASK native messaging framework is used for any IPC
between the scheduler, client, and worker processes.0

One of the main motivations for investigating the usefulness of the Sessions model within the
DASK framework is the interest in running tasks within the framework which make use of
MPI to accelerate tasks which, if run sequentially within a DAG could lead to a bottleneck in
a workflow as problem sizes are scaled up, but which can be efficiently parallelized using
MPI. Note DASK does support an IPC mechanism, but its performance is generally poor
compared to that delivered by MPI implementations, especially on high performance
networks typical of HPC systems. Ideally the DASK framework would not need to directly
know about the fact that a set of tasks were us

As an initial first step in exploring the use of MPI tasks within DASK, we attempted to run a
simple MPI task within the DASK-MPI framework. The task uses MPI Sessions to create an
MPI Communicator. Figure 4 illustrates how DASK-MPI maps components of a DASK job
to MPI ranks.

Figure 4. Mapping of MPI Ranks to components of a DASK-MPI batch job. Rank 0 runs the
DASK scheduler, Rank 1 runs the client Python script, and the tasks submitted by the client

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

18

script to the DASK scheduler are run on the DASK Worker processes. The Worker processes
are scheduled on the remaining MPI ranks in the job.
Although DASK-MPI was used as a starting point for evaluating the use of Sessions for more
non-traditional HPC applications, we would expect it to be usable within the DASK
framework as well. This would require extensions to DASK to know how to launch a task
set using the PRTE launcher.

4.2.2 Challenges Using DASK with the Sessions Prototype

The evaluation of the Sessions prototype using DASK-MPI revealed a significant limitation
in the prototype. Namely, there is no way currently to specify arbitrary process sets within a
given MPI job. For the demo, the prototype was enhanced to pre-define a dask:://world
process set which spans MPI ranks 2 through N-1, for an N-way MPI job. The prototype
does support querying the PMIx runtime for process sets, but PMIx currently does not offer
support for defining additional process sets. Were DASK-MPI to be enhanced to allow for
the use of MPI tasks which employ the Sessions approach to MPI initialization, it would be
necessary to enhance PMIx to be able to define additional process sets. This would probably
need to be fairly dynamic. DASK-MPI would need to define client-side extensions to the
underlying DASK client API to allow for specification of at least the size of an MPI
accelerated task, as well as hooks into PMIx to create the necessary process sets to support
these tasks.

Future work will involve enhancing PMIx to provide mechanisms for defining process sets in
a dynamic way, and providing hooks to this functionality for DASK-MPI such that it can
schedule MPI accelerated functions within the context of a general DAG-defined workflow.

5. CONCLUSIONS

This follow-on evaluation of the prototype implementation of the MPI Sessions API shows
that in the area of functionality, it is already able to demonstrate some of the important
aspects of MPI Sessions. Namely, tasks running within a framework such as DASK can
initialize MPI communicators without needing for the framework to be aware of the use of
MPI within the tasks. However, the evaluation also showed that the prototype and the
supporting PMIx infrastructure currently lack functionality required for the proto-type to be
of general use within DASK, and likely similar frameworks for supporting parallelization of
DAG based workflows.

6. WORKS CITED
Bernholdt, D., Boehm, S., Bosilca, G., Venkata, M., Grant, R., Naughton, T., . . . Vallee, G.

(2017, June 14). A Survey of MPI Usage in the U. S. Exascale Computing Project.
Oak Ridge National Lab: Exascale Initiative, U.S. DOE. Retrieved June 14, 2018,
from https://www.exascaleproject.org/

Castain, R. H. (2018). PIMx: Process Management for Exascale Environments. Parallel
Computing, 79, 9-29.

OMPI-X Design Document: STPM13/OMPIX/13-35
Second Demonstration and Evaluation of MPI Sessions Prototype version 1.0

19

Gabriel, E., & al, e. (2004). Open MPI: Goals, Concept, and Design of a Next Generation
MPI Implementation. 11th European PVM/MPI User's Group. Budapest.

Goglin, B. (2018, 1 1). HWLOC. Retrieved 6 24, 2018, from HWLOC:
https://github.com/open-mpi/hwloc

Hjelm, N., Pritchard, H., Gutierrez, S., Holmes, D., Castain, R., & Skjellum, A. (2019). MPI
Sessions: Evaluation of an Implementation in Open MPI. 2019 IEEE International
Conference on Cluster Computing.

Holmes, D. M. (2016). MPI Sessions: Leveraging Runtime Infrastructure to Increase
Scalability of Applications at Exascale. EuroMPI, 121-129.

